Fast Accurate Simulation of Large Shared
Memory Multiprocessors
(revised version)

Bob Boothe*
Report No. UCB/CSD-93-752
June 1993

Computer Science Division (EECS)
University of California

Berkeley, CA 94720

Abstract

Fast computer simulation is an essential tool in the design of large
parallel computers. Our Fast Accurate Simulation Tool, FAST, is able to
accurately simulate large shared memory multiprocessors and their exe-
cution of parallel applications at simulation speeds that are one to two
orders of magnitude faster than previous comparable simulators. The key
ideas involve execution driven simulation techniques that modify the ob-
ject code of the application program being studied. This produces an
augmented version of the code that is directly executed and performs
much of of the work of the simulation. We extend the previous work by
introducing several new uses of code augmentation.

In this paper we summarize the tradeoffs made in the designs of this
and previous simulators. In previous simulators, these tradeoffs have often
led to sacrificing accuracy for faster simulation. However by careful selec-
tion of techniques and when to apply them, we have built a simulator that
is both faster and more accurate than previous simulation systems. The
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improved accuracy comes from applying code augmentation techniques
at a uniform low level and from having such fast context switching that
accuracy /performance tradeoffs become unnecessary.

Our simulator has a modular design and has been configured in many
ways. It has been used to conduct numerous experiments on multi-
threaded machine behavior, application behavior, cache behavior, com-
piler optimization, and traffic patterns. Because of its high performance,
we have been able to perform simulations of larger machines than would
otherwise have been feasible.

1 Introduction

Simulation is an essential tool in the process of computer design. While the speed of
simulation has always been a concern, it is of critical concern when simulating par-
allel machines because of the increased computational power of these machines. The
arithmetic is obvious: simulating one second of execution of a one MIP uni-processor
requires simulating one million instructions, but simulating one second of execution
of a thousand processor parallel machine requires simulating one billion instructions.
Most simulation based research reports being limited in scope and accuracy by the
speed of their simulators[2, 8, 13]. Faster simulators allow larger and more realistic
simulations to be performed and help speed up the experimental process by allowing
more rapid feedback of simulation results.

Our simulation system, FAST (Fast Accurate Simulation Tool), has a simulation
slowdown ranging from 10 to 100. This slowdown factor is the average number of
cycles it takes to simulate a single cycle of execution for a single processor. It varies
based on the application program being simulated. Applications with more frequent
references to shared memory interact with the simulator more frequently and therefore
take longer to simulate. Comparable simulation systems such as that of O’Krafka[l2]
or Tango[6] have reported slowdowns of 2,000 and 500-6,000 respectively.

FAST was developed for the purpose of studying large shared memory multipro-
cessors with hundreds or thousands of processors, and to run real applications on
these simulated machines. To support our simulation studies of such large systems,
we needed a simulator that was orders of magnitude faster than the other simulators
that were available at the time of its development.

The technique of execution driven simulation[5] is the foundation of FAST. We
are not concerned with the simulation of a new instruction set, but rather we are
concerned with higher level aspects of the simulated machine. Because of this, we
can accept the instruction set of the host machine on which we are performing our
simulations. This allows us to directly execute most instructions instead of spending
hundreds of cycles to interpret each instruction individually[10]. The assembly code of
the application program is augmented with additional instructions which keep track
of a thread’s execution time and return control to the simulator at special events such



as references to shared memory. The net result is that most instructions are directly
executed in a single cycle, and only the small fraction of instructions which interact
with the rest of the system need to be simulated.

In this research we have extended the idea of execution driven simulation with
several new techniques that have allowed up to build a simulator that is both faster
and more accurate than previous comparable simulators.

1.1 Overview

The remainder of this paper is broken into five sections. Section 2 discusses several
previous simulators and their tradeoffs in performance, accuracy, and other concerns.
Section 3 presents an overview of FAST. Section 4 explains our extensions to the ideas
of execution driven simulation. Section 5 reports performance results. And section 6
summarizes and suggests directions for future research.

2 Previous Simulators and Tradeoffs

There have been an enormous number of simulation systems written for various pur-
poses. Here we focus on a few recent simulators that have all been designed for
basically the same purpose: simulating large shared memory multiprocessors at the
instruction level.

We compare their performance in terms of their slowdown factors, and we also
look at two aspects of accuracy. One is the degree to which instruction timings reflect
that of an actual processor, and the second is the degree to which shared memory
references are interleaved and simulated in an accurate global order.

2.1 Cycle-by-Cycle Simulators

The most straight forward type of simulator to build is one that cycles through the
parallel processors, simulating one instruction at a time from each of the processors.
Two examples are the simulator by O’Krafka[12], which we are more familiar with
since this was done at Berkeley, and ASIM(refer to the description in [7]) developed at
MIT as part of the Alewife project. These simulators are slow because they are essen-
tially assembly language interpreters. The reported slowdown factor for O’Kraftka’s
simulator is 2,000, and for ASIM it is reported as ranging from 200-5,000. Cycle-
by-cycle simulators are accurate in interleaving global events since they simulate the
entire machine one cycle at a time, but they may be inaccurate in instruction timing
(as is O’Krafka’s simulator) because it is complex and time consuming to accurately
model the processor’s pipeline.

The performance of these cycle-by-cycle simulators is dominated by instruction
interpretation since this is done for every single cycle of the executed program. In-
teresting events, like shared memory references, occur less frequently.



2.2 Execution Driven Simulators

Execution driven simulation can be substantially faster than a cycle-by-cycle sim-
ulator because it eliminates the instruction interpretation portion of the simulator.
Instead, control is handed over to the augmented program which executes for several
cycles before encountering an event of interest and returning control to the simula-
tor. The simulated processor has now advanced its private clock past those of other
simulated processors. Accurate event interleaving dictates that the event should not
be processed immediately, but rather it must be scheduled and executed once the
entire global state has advanced to the event’s time step. This means that instead of
cycling between the simulated processors on a cycle by cycle basis, it is sufficient to
cycle between them at each event (as long as the events are then queued and later
executed at their proper times).

The Tango simulator[6] developed at Stanford is an execution driven simulator.
It is based on Unix shared memory and uses Unix context switches in order to switch
from executing one processor to another. These heavy weight context switches how-
ever require thousands of cycles, and thus they slow the simulator substantially if
it switches at every event in order to accurately interleave them. For accurate sim-
ulations they report slowdown factors ranging from 500 to 6000. Because of this
large cost of context switching, they provide an option to tradeoff accuracy for faster
execution by letting the individual processor clocks get out of sync and not trying
to accurately interleave the shared memory references. They have recently rewritten
their simulator to use a light weight thread package, which should significantly reduce
the magnitude of their context switch overhead problem.

The Proteus simulator developed at MIT[3, 7] is another execution driven simula-
tor. It does use a light weight thread package, and is substantially faster than Tango.
They report typical slowdown factors ranging from 35 to 100. However they have a
substantial accuracy problem in their instruction timing because they do not apply
code augmentation at a consistent low level. They replace shared memory references
in the C source code with calls to the simulation routines (and optionally also insert
statistics gathering calls.) They then compile this modified code and apply code aug-
mentation for timing on the assembly language. Because each shared reference (which
should be just a single instruction) is replaced with a procedure call, the compiler
optimizations that can be applied and the object code produced are substantially
changed from what would have been produced if the original code were compiled
directly. Their good performance is partially due to the fact that their insertion of
procedure calls causes the compiler to save away important registers, and thus allows
them to “exploit ‘partial’ context switches” in which they only save a limited amount
of the register file. This is good for performance, but bad for timing accuracy.

2.3 Tradeoffs

We have identified the following five tradeoffs in simulator design:
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Performance: Execution driven simulation is the most important factor in building
a fast simulator because otherwise the interpretation of individual instructions
is the dominant cost. The next most important factor is fast context switching
between the simulated processors because frequent context switching is required
to accurately order global events.

Accuracy: Performing all code augmentation at the assembly language level is nec-
essary for accurate instruction timing. Any source code modifications that
change the code generated by the compiler affect the compiler’s optimization
ability and the thus accuracy of instruction level timing. Switching between
simulated processors at all globals events is required in order to obtain a cor-
rect global ordering. If context switching is expensive, then the simulator writer
or user is tempted to trade accuracy for performance by context switching less
often.

Source Alteration: Ideally the source code should be compiled and optimized in
its original form as it would be written for a shared memory multiprocessor.
However, all of these simulators require some source changes. Proteus is the
most egregious and requires new operators be used for all shared memory ref-
erences. O'Krafka’s simulator and Tango both disallow static shared variables,
and thus all such variable must be allocated dynamically and referenced indi-
rectly through pointers. FAST only requires minor syntactic changes® that have
no affect on the instructions generated by the compiler.

Modularity: All of the simulators have similar modularity. Each allows selecting
and mixing different modules for different aspects of the machine: such as the
cache and the interconnection network. Normally this is done by linking the
modules together, but Tango also has the option (at substantial performance
cost) of using distinct Unix processes.

Portability: Portability is poor for all of these systems because they are tied to
the instruction set that they are designed for. Direct execution simulators
must be run on that specific type of machine, but cycle-by-cycle simulators,
since they are interpreters, can use cross-compiled applications and be run on
any machine. Porting execution driven simulators to a new machine involves
changing the code augmentation to understand the new machine’s instruction
set. The actual simulators are all written in high level languages and should
presumably be portable.

'Most of our applications were originally written for the Sequent[14]. Their syntax for declaring
a shared variable is: shared int x;. Our syntax is: int shared x;. All uses of the variable x are
also changed to to shared x. These changes allow shared variables in the object file to be identified
by using symbol table information that is normally used for linking.
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Figure 1: Diagram of using FAST.

Based on an understanding of these tradeoffs, we have built our FAST simulation
system so that it is faster, more accurate, and uses less mutative source alterations.
It has similar modularity and portability as in the other simulators discussed.

3 Simulator

Figure 1 shows a diagram of using FAST. First the application program to be simu-
lated is compiled with full optimization just as it would be for a real parallel processor,
and then it is linked with any libraries that it uses, such as math routines.

The linked object code module is then read into the code modifier which performs
the various code augmentations (which will be discussed in the next section). It is



important that augmentation be done on library functions since some applications
use these extensively. System calls are not handled, but these usually do not occur
in the parallel computation phases of the parallel applications we studied.

The modified code is then linked with the simulator and selected modules that
simulate the caches, network, and scheduler. A large number of these modules have
been written, and they can be selected based on what is of interest to the user. For
caching there are modules for various cache configurations and protocols, or for no
caching at all. For networks the simulator is usually used with a simple constant
time network approximation, but it has also been used with a detailed simulator of
packet switched networks. The scheduler module is used for multithreading studies
and implements simple scheduling policies such as FIFO, or more complex policies
like priority scheduling or timeouts.

The single executable file produced includes the simulator, the various modules,
and the modified application code. When it is run, the simulator starts first. It
reads in a simulation parameter file that specifies the number of processors, level
of multithreading, network latency, and other parameters. It then calls initialization
routines for the various modules, and then starts up and manages the execution driven
simulation of the application program.

The core of the simulator is a simple time wheel scheduler. This is just a linear
array with one slot per time step (modulo the array size), where each slot points
to a linked list of events that will occur at that time step. The simulator operates
by removing an event at the current time step, simulating it (using execution driven
simulation), and then placing the resulting event into the proper slot to be executed
in the future. This is very efficient since there is no polling to test for ready events,
and for simulations of large parallel machines, there are so many events that typically
every slot has one or more events in it. The average cost of scheduling an event is
thus very small.

4 Code Augmentation

Code augmentation is the process of taking an original piece of code and adding to it
and/or modifying it so that it can perform additional functions. Traditionally it has
been used for the following three purposes:

Time Counting: Instructions are added to the each basic block so that when that
block is executed, the extra instructions increment a time counter with an
amount corresponding to the number of cycles required for the processor to
execute the original basic block. This is the basic code augmentation that is
used in all execution driven simulators.

Statistics Gathering: Instructions are added to gather statistics such as counts of
the number of times that certain pieces of code are executed. This is the basis
of execution driven profilers, such as the MIPS pixie program[11].
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Event Call-Outs: At special events, such as shared memory references, code is in-
serted to call out to the simulator in order to let the simulator regain control
and process the event. This is used in a simplified form when debuggers create
breakpoints by replacing the instruction at the breakpoint with a trap instruc-
tion.

In this section we extend the idea of augmentation with several new uses:

In-line Context Switching: The augmented code typically runs for just a small
number cycles before reaching an event and returning control to the simulator.
During this execution only a small subset of the register file is ever accessed, and
therefore it is wasteful to actually load and store the entire register set. We use
code augmentation to load and store register values at basic block boundaries
so that only the used and modified registers are loaded and stored.

Reference Indirection: For a single threaded program, which the compiler thinks
it is compiling, static local variables are assigned to fixed memory addresses.
However for a parallel program each thread needs its own copy of these variables.
Our code augmenter converts these references into indirect references into the
executing thread’s context block which contains the thread’s local state: register
values, local variables, and stack.

Dynamic Reference Discrimination: We have suggested that with proper lan-
guage support[2], a compiler should be able to statically identify all memory
accesses as going to either local or shared memory. Since we don’t have lan-
guages and compilers that support this, we have added code augmentation to
check address ranges at execution time and determine if a pointer is to shared
or local memory. Optionally, this reference classification information can be
collected as a trace file on the first run of an application and then fed back into
the code modifier to do complete static classification.?

Re-Optimization: During our studies of multithreading we found it important to
group shared memory load instruction together. We implemented this within
the code modifier by reordering instruction and percolating shared memory load
instructions up towards the tops of basic blocks.

Extended Instruction Sets: For the most part we accepted the instruction set of
the processor on which simulations were being executed: the MIPS R3000[9].
However we did want to add a number of new instructions such as: double
word load and stores, local and shared memory versions of all loads and stores,
an explicit thread switch instruction, fetch-and-add, and other special synchro-
nization instructions. These were all added by having the code modifier convert
these into calls to special simulator routines.

2This accurate static classification is required for our re-optimization of the code.



registers: Rgp = global pointer

codefor: A=B+C+X Rsbp = shared base pointer

where: A is variable in shared memory Rcp = context pointer
B,C are variables in local memory Rtime = time value
X is variable in register r8

simulator interface:
simulator_sw(r4 = address, r5 = value)

o lw 18, offset_of r8(Rep) > load used registers
I'w ri, local _addr_of _B(Rgp) I w ri, local addr_of B(Rcp)
Iw  r2, local _addr_of_C(Rgp) Iw  r2, local _addr_of _C(Rcp)
add r3, rl, r8 add r3, rl, r8
add r3, r3, r2 . add r3, r3, r2
sw r3, shared_addr_of A(Rgp) . sw ri, offset_of ri(Rcp)
sw r2, offset_of r2(Rcp) save modified registers
~. sw 13, offset_of r3(Rep)
“.addi Rtine, Rtime, 4 > accumulate time

addi r4, Rsbp, shared_addr_of _A
- I w r5, offset_of_r3(Rcp)
. addi Rtime, Rinme, 1
“.call sinulator_sw

call out to ssmulator

(a) original code (b) modified code

Figure 2: Example of code augmentation

Virtual Registers: On of the most useful new code augmentations is virtualization
of the register file. This simplifies implementation of the other code augmen-
tations because it eliminated concerns about remapping registers. This will
discussed more fully at the end of this section.

4.1 An Example

Figure 2 shows an example of code augmentation for a small code fragment which
will be used to demonstrate several of the code augmentations described above. The
original assembly language instructions are shown in part (a); the modified code
is shown in part(h).> These instructions were generated by the compilation of the
expression A = B+ (' 4+ X, where the variables B and ' will be loaded from local
memory, the variable X is already in register r8, and the result A will be stored
in shared memory. Assume for this example that this expression by itself forms a
basic block. Basic blocks are the granularity at which we perform analysis and code
augmentation, and thus this small basic block can serve as a complete example.
The first step is to identify which instructions can be directly executed by the
host processor and which instructions will require call-outs to the simulator. In this
example the last instruction references shared memory and thus will be replaced with

3The instruction set is approximately that of the MIPS R3000[9], but it has been simplified
slightly to make the example clearer.



a call-out. The other four instructions are local to the processor and can be directly
executed. For ease of manipulation, the call-out instruction is isolated into its own
basic block, as indicated by the horizontal lines separating the instructions.

The second step is to calculate the timing of the basic blocks. The first block has
four instructions and takes four cycles. The second block has one instruction and
takes one cycle!. The timing of each basic block is computed statically and is used
in the inserted instructions which accumulate the running execution time in register
Rtime.

The third step is reference indirection. The loads of local variables B and C are
originally relative to the global pointer (register Rgp). These are changed to be thread
relative by indexing off of the thread context pointer (register Rep).”

Step four involves adding code for in-line context switching. In our implementa-
tion, we maintain the invariant condition that between basic blocks all register values
should be correctly stored in the context block of the executing thread. In our system
this context block is pointed to by the Rep register, and thus register load and stores
are relative to this pointer.

At the start of each basic block we insert code to load the registers whose values
will be used. In the example, only the value in register r8 is used. The registers ril,
r2 and r3 also appear, but they do not need to be loaded since their original values
aren’t used. At the end of each basic block we append code to store any registers
who’s values have been redefined. In the example this is r1, r2 and r3.

This completes the code augmentation for the first basic block. The second basic
block is the save word instruction (sw) that originally saved the value in register r3 to
an address in shared memory. It is replaced by a sequence of instructions which load
parameters and then call-out to a simulation routine to perform the shared memory
operation. The address and data values are loaded into the argument registers (r4
and r5) and the time counter (Rtime) is incremented by 1 (the time taken by the
original instruction). If the simulator finds that more time would be needed by this
instruction, for instance if the memory network is clogged or there is a cache miss,
the simulator would add the additional time.

This completes the code augmentation. The code has now been converted so
that it is context block relative. The simulator can now switch threads by changing
the context pointer and time counter and then jumping into the new thread to be
executed.

4In general determining accurate timing is somewhat more complicated because the processor
pipeline must be modeled. Usually looking just within a basic block is adequate, but sometimes
long latency floating point operations continue executing past the end of a basic block and affect
the timing of subsequent blocks. If these subsequent blocks are selected by conditional branches,
the exact timing will depend upon the branch paths taken at execution time. These cases are rare,
and for our simulator we use timings based on the statically predicted most likely branch paths.

5Here reference indirection is simply changing from Rgp to Rcp and possibly changing the offset.
Tt is more involved when the original reference is not relative to Rgp.
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4.2 Virtual Registers

The technique of in-line context switching usually leaves most register values in the
context block, and this motivated the idea of virtualizing the register file. When
register r8 was loaded and later used in figure 2(b), it could have been loaded into
any physical register as long as the later use in the add instruction was also changed
to use the same register. Thus the virtual registers used in the original code need not
be the same as the physical registers used in an expanded basic block. Different basic
blocks could choose to use different physical registers to hold the virtual register r8.

The benefit of this is that we can now have more virtual registers than there are
physical registers. For instance we have used virtual registers Rtime, Rcp, and Rsbp
in our modified code. The mapping between virtual and physical registers is possible
as long as each individual basic block doesn’t use more virtual registers than there are
physical registers to map into. Mapping problems are rare and occur only for large
basic blocks, and they are easily handled by splitting these large blocks into multiple
smaller blocks.

This virtualization of the register file actually simplifies other code augmentations.
For instance in the old style of code augmentation, some specific physical register,
say r30, is used for time counting. Thus wherever r30 is used in the original code,
the code must be modified to work around the usurpation of this register.

Virtual register have many potential uses. One example use was in a research
project that tried to improve memory reference patterns by re-optimizing basic blocks
in order to group together shared memory load instructions. This re-optimization
needed a few extra temporary registers to allow reordering of instructions while still
preserving all data dependencies, and these extra registers were made available as
extra virtual registers.

5 Performance

In this section we discuss three aspects of the performance of our simulator: the cost
of in-line context switching, the slowdown factors of basic simulations, and the affects
on slowdown when simulating multithreading or caching.

5.1 Cost of In-line Context Switching

Table 1 shows the effectiveness of in-line context switching. It gives the context switch
frequency and the average context switch costs for the applications that we have used
in our simulation studies. Sieve, blkmat, and sor are toy applications developed by
the author. Ugray is from Berkeley[1]. Water, locus, and mp3d are from the Stanford
SPLASH[15] benchmark set.

The switch in cost listed in the table is the average number of registers loaded
per context switch into the application from the simulator. The switch out cost is
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Context Average
switch cost interval | Amortized
switch | switch || between | cost per

Application | Description in out switches | instruction
sieve finds primes 9.8 7.9 7.0 2.5
blkmat blocked matrix multiply 47.7 50.3 48.0 2.0
sor solves Laplace’s equation 8.5 5.5 4.2 3.3
ugray ray tracing renderer 11.8 9.1 10.1 2.1
water system of water molecules || 27.7 22.2 33.1 1.5
locus standard cell router 8.0 5.2 4.0 3.3
mp3d rarefied hypersonic flow 8.1 6.3 4.7 3.1

Table 1: Context Switch Costs

the average number of registers saved per context switch from the application out
to the simulator. Recall that these register loads and stores do not all occur at the
points of context switching between the simulator and threads, but are spread among
the prefixes and suffixes of the sequence of basic blocks executed between context
switches. Also included in these context switch costs are the overheads incurred by
the simulator in saving and restoring reserved registers such as the program counter,
time counter, stack pointer and context pointer.

The column labeled average interval between switches shows the average number of
simulated cycles between context switches. For those applications that context switch
most frequently, the context switch cost is less than 10 cycles. The locus program,
for example, accesses shared memory very frequently and thus context switches at an
average rate of once every four cycles. The average cost of these context switches is
8.0 cycles to switch in and 5.2 cycles to switch out. In all cases, the context switch
cost is less than the size of the register set®. In comparison, the light-weight thread
package used in Proteus[7] loads and stores the entire register set and takes 135 cycles
per context switch.

In our system, the cost of context switching is roughly proportional to the fre-
quency of occurrence, because the longer an application executes, the more registers
it is likely to use. The blkmat and water applications, for example, context switch
less frequently than the other applications and their average context switch costs are
higher. However since they don’t context switch as frequently, the higher context
switch costs are amortized over a longer period. Overall, the total context switch
overhead ranges from 2 to 3 cycles per simulated cycle.

5.2 Slowdowns Factors for Basic Simulations

50n a Mips processor there are 29 integer, 32 floating point and 3 special purpose registers in
the usable register set.
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Figure 3: Simulation Slowdown

Figure 3 shows the performance of the FAST simulator on the various benchmark
applications. Results are shown with the number of processors varied from 1 to 1024.
The slowdown factors shown in this graph are the number of cycles taken to simulate
a single cycle of a single thread. Since most instructions are directly executed and
the context switching cost has been reduced to just 2 to 3 cycles per simulated cycle,
one might expect slowdown factors of 3 or 4. The slowdowns are larger because
of the remaining overhead which comes from the scheduling mechanism within the
simulator, the simulation of shared references, the memory simulator, and statistics
gathering. For this graph the memory model iss a simple ideal memory that has 0
latency and no contention.

Two interesting trends can be observed from this graph. First, the slowdowns vary
for different programs. Programs such as blkmat and water have typical slowdowns
from 10 to 30, while programs such as locus and sor have typical slowdowns from 60
to 100. The difference comes from the different frequencies at which the applications
interact with the simulator. Sor and locus had context switches every 4 cycles
compared to blkmat and water which have context switches only every 30 to 50
cycles and thus require much less scheduling by the simulator. The cost of simulated
events is amortized over a larger number of instructions and thus the overall slowdown
factors for blkmat and water are lower than those for the other applications.

The second interesting trend is that as the number of processors is increased,
the slowdown factor initially drops and then slowly rises. The initial decrease in
slowdown is due to the time wheel algorithm used to schedule threads and events. It
works best when there are many processors and thus there are many events per cycle.
The later increase in the slowdown factor occurs because the applications use more
synchronization operations as the number of processors is increased. Synchronization
operations, especially spinning on locks or barriers, involve many shared accesses and
thus increase the work of the simulator.
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Figure 4: Simulation slowdowns under different configurations.

5.3 Multithreading and Caching

FAST was designed in a modular fashion and can be configured to perform a wide
variety of different simulations depending upon what is of interest to the researcher
conducting the simulation studies. The main uses of the simulator have been for
studies of multithreading under long memory latencies and for performance studies
of cache coherency protocols.

Figure 4 shows the performance of the simulator under three configurations: the
tdeal case which has 0 latency, the multithreading case which has 200 cycle latency
and several threads per processor, and the caching case which uses a cache simulator
of the Censier and Feautrier[4] directory based cache coherence protocol. The ideal
case and the multithreading case have roughly the same performance. This occurs
because studying multithreading was one of the primary intended uses of FAST, and
thus multithreading support was built in from the start. Single threaded execution is
simply a special case of multithreading in which there is just one thread per processor.
The cache simulator typically takes hundreds of cycles per reference to check and
manipulate the caches’ states, and this extra overhead slows the simulations. The
change in performance is moderated by the fact that the cache simulation cost is
amortized over the total number of simulated cycles.

6 Summary and Future Research

We have used FAST to perform a large number of architectural simulations. Its fast
speed has allowed us to simulate larger problems and larger machines than would have
been possible with previous comparable simulators. Execution driven simulation is
the most important technique for obtaining high performance.

However speed is just one important aspect of FAST. By carefully understanding
the tradeoffs in design choices, we have been able to build a simulator that is also more
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accurate than previous instruction level simulators. The most important point is that
code augmentation must be applied at a low level since source code alterations can
perturb the object code produced and thus the accuracy of instruction level timings.
A second point is that accurate interleaving of global events requires frequent context
switching between simulated processors, and thus fast context switching is desirable.

In building FAST, we have extended the idea of code augmentation into a number
of new areas such as in-line context switching, re-optimization, extended instruction
sets, and virtualization of the register file. These extension have been important in
making the right design tradeoffs so as to obtain both high performance and high
accuracy, and in making a simulator that is flexible enough to be used for a large
variety of experiments.

There are several possible directions for future research with FAST or similar
simulators. First, since, we are simulating a shared memory multiprocessors, it should
be possible to speedup the simulator be executing it in parallel on today’s small shared
memory multiprocessors in order to simulate tomorrow’s larger machines. The main
problem that will arise is synchronizing and correctly interleaving the concurrent
simulations of multiple processors.

Second, FAST would be a good foundation for a parallel program development
and debugging system. Simulators are useful for debugging because they can repro-
duce identical timing races on subsequent runs. The Proteus[7] simulator provides
a powerful monitoring facility by inserting monitoring code into the source code of
applications, and we would like to see if similar mechanisms could be built without
modifying the applications’ source code.

Third, our new augmentation techniques of virtualizing the register file and ex-
tending the instruction set could be used along with a modified compiler to study
various architectural changes such as machines with larger register files or the utility
of new instructions.
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